
Introduction Survival analysis Marker detection in oncolgy Neural networks for the survival prediction Conclusion/Perspectives

Contributions to marker detection and
survival analysis in oncology

Mathilde Sautreuil

February 12th, 2021

PhD defense - M.Sautreuil Contributions to marker detection and survival analysis in oncology 1/37



Introduction Survival analysis Marker detection in oncolgy Neural networks for the survival prediction Conclusion/Perspectives

Context

Precision medicine
• Not a new concept: Hippocratic origins
• Discovery of the DNA double helix in 1950
• Consequence: Omics data available for patients
• Objective: Adapt the treatments according to the molecular portrait of

patients
Ù High-dimensional data: need of new statistical and bioinformatics methods
• Critical role in oncology

1 Diagnostic (subtypes of cancers)
2 Pronostic (survival, relapse and progression)
3 Response of a patient to a treatment
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Objectives of the PhD thesis
Marker detection

1 Identify the genes implied in the ccRCC
• Differential analysis: statistical tests taking into account the characteristics of

gene expression data
→ But false positives

• Learning methods
Ù Detect the genes by using differential analysis and learning methods

2 Identify the genes impacting the survival duration
• Regularization and screening methods, but the issue of selection stability

Ù Study of these methods by quantifying their stability

Survival prediction
1 Prediction of a patient’s survival in a high-dimensional framework

• Different models → Classical: Cox model
• Interactions and non linearity

Ù Study of neural networks in high-dimension
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Outline

1 Survival analysis
Concepts and notations
Models

2 Marker detection in oncolgy
Marker detection: Identify the genes implied in the ccRCC
Marker detection in survival analysis

3 Neural networks for the survival prediction
Survival prediction in high-dimension
Neural networks for survival prediction
Simulation study
Real datasets

4 Conclusion/Perspectives
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Survival analysis in Oncology

Survival analysis

Ù Study of elapsed time until an interest event (death or recovery)

Objectives
1 Marker detection

• Which factors have an impact on the survival of patients ?
2 Survival prediction

• Computing the risk of death
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Framework and notations
• Random variable to predict: Survival time T of a patient
• Explanatory variables: factors X (e.g. transcriptomic data)
Ù Survival time T can be censored

Right censorship: Observed times are less than the survival duration

Notations
• n: number of individuals, p: number of variables
• Ti the survival time for individual i
• Ci the censoring time for individual i
• Xi = (Xi1, . . . ,Xip)T: vector of variables for individual i
• We observe for individual i:

Yi = min(Ti,Ci) δi =

{
1 if Ti ≤ Ci
0 otherwise
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Models in survival analysis
Cox model:

λ(t|Xi) = α0(t) exp(βT0 Xi)

Ù a proportional hazards model
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AFT model:
λ(t|Xi) = exp(βTXi)α0(t exp(βTXi))

Ù Covariates accelerate the risk curve
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AH model:
λ(t|Xi) = α0(t exp(βTXi))

Ù More irregular behaviour
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1 Survival analysis

2 Marker detection in oncolgy
Marker detection: Identify the genes implied in the ccRCC
Marker detection in survival analysis

3 Neural networks for the survival prediction

4 Conclusion/Perspectives
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Detection of markers implied in one type of cancer
Real dataset: clear cell renal cell carcinoma (ccRCC)

• Collaboration with Dr Diana Tronik-Le Roux of St Louis Hospital/CEA.
• Immunotherapy: to understand the role of checkpoints in the blocking of immune action against

tumour cells

• Some therapies target checkpoints CTLA-4 and PDL-1
Ù Only 30% of patients respond positively
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Detection of markers implied in one type of cancer

Analysis: clear cell renal cell carcinoma (ccRCC)

• 44 immune-checkpoints identified in ccRCC + 3 control genes
• Expression level in tumour vs control (TCGA database)
Ù Differential analysis + RFE-SVM

• Differential analysis: DESeq2
• 39 ICs considered as differentially expressed with BH correction
Ù False positives

• RFE-SVM: Remove recursively genes which are the less important in the
classification task

Ù Subset of optimal genes: 7 IC (HLA-G, HVEM, PD-L1, B7-H3, ILT2, CD40,
B7-H5)
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Detection of markers implied in one type of cancer

• HLA-G: IC the most important, but its value is not the higher
Ù Target HLA-G/ILT potential strategy in the case of no response to anti-PD1/PDL-1

 Diana Tronik-Le Roux, Mathilde Sautreuil, Mahmoud Bentriou, et al. (2020),
Comprehensive landscape of immune-checkpoints uncovered in clear cell renal cell carcinoma
reveals new and emerging therapeutic targets, Cancer Immunology, Immunotherapy
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Marker detection for survival analysis in high-dimension
Ù Determine covariates with strong impact

• Cox model: λ(t|Xi) = α0(t) exp(βT0 Xi)

• β̂ = argmaxβ L(β) with L (β) =
∑n

i=1

(
βTXi

)
−

∑n
i=1 δi log

(∑
l∈Ri

exp
(
βTXl

))
• where L(β) the Cox partial log-likelihood, Ri the individuals at risk at time ti and δi the censorship indicator

In high-dimension
• Estimation of β not consistent
• To have a better interpretability and to solve the optimization problem:
Ù Adding a penalty term to the minimization of the opposite of the partial log-likelihood

Regularization methods

 argmin
β

−L (β) + λ

p∑
j=1

||βj||q


λ: regularization parameter

• Lasso method
• Adaptive-Lasso method
• Ridge method
• Elastic-Net method
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Marker detection for survival analysis in high-dimension
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Regularization methods
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• Lasso method
• Adaptive-Lasso method
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Marker detection for survival analysis in high-dimension

Screening methods

Ù Methods developed to solve stability problems of regularization methods
• (I)SIS (Saldana and Feng, 2018; Fan and Lv, 2017)
• PSIS (Zhao and Li, 2012)
• coxCS (Hong et al., 2018)

Principles

1 A pre-selection is made by computing a score for each covariate individually
2 Covariates are sorted and the covariates with the higher scores are chosen
3 A regularization method (Lasso) is applied to this pre-selection
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Marker detection for survival analysis in high-dimension

Screening methods: SIS
• SIS: Sure Independance Screening

1 Compute a score: marginal utility

um = max
βm

 n∑
i=1

(δiβmxim)−
n∑

i=1

δi log

 ∑
j∈R(yi)

exp(βmxjm)


2 Covariates with a score > γ are selected
3 Lasso procedure is applied on the selected covariates
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Marker detection for survival analysis in high-dimension
Screening methods: SIS, ISIS

• SIS: Sure Independance Screening
1 Compute a score: marginal utility

um = max
βm

 n∑
i=1

(δiβmxim)−
n∑

i=1

δi log

 ∑
j∈R(yi)

exp(βmxjm)


2 Covariates with a score > γ are selected
3 Lasso procedure is applied on the selected covariates

• ISIS: Iterative version of SIS
• Application of SIS procedure
• For SIS selection set

1 Compute a new score: conditional utility
2 Covariates with a score > γ are selected
3 Lasso procedure is applied on the selected covariates

Ù Repeat until convergence
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Marker detection for survival analysis in high-dimension

Screening methods: SIS, ISIS, PSIS

• PSIS: Steps similar to SIS procedure
1 Score → to take into account the False Postives

Ù score = Ij(β̂j)1/2|β̂j|
2 Covariates with a score > γ are selected
3 Lasso procedure is applied on the selected covariates
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Marker detection for survival analysis in high-dimension

Screening methods: SIS, ISIS, PSIS, coxCS

• PSIS: Steps similar to SIS procedure
1 Score → to take into account the False Postives

Ù score = Ij(β̂j)1/2|β̂j|
2 Covariates with a score > γ are selected
3 Lasso procedure is applied on the selected covariates

• coxCS: Biological knowledge
• Biological selection
• For pre-selection set

1 Compute a score
2 Covariates with a score > γ are selected
3 Lasso procedure is applied on the selected covariates
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Marker detection for survival analysis in high-dimension

Regularization and screening methods
1 Studying the stability of both methods with similarity indexes and other

criteria:
• What is the level of stability of regularization methods?
• Do screening methods solve the stability problem?
• Can biological knowledge improve stability?
• And what is the quality of the selection?
Ù Illustration on ccRCC dataset

2 Discovering new potential markers impacting the survival for the ccRCC
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Stability study on the ccRCC dataset

3 approaches

1 Immune-Checkpoints (p = 48)
2 Differential expressed genes (p = 11 289)
3 All the genes (p = 17 789)

Procedure
• Run on 100 different seeds
• Selected genes for each seed
• Compute the similarity between the seeds: Sørensen index
• Compute the validity of model: AIC
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Indexes

Sørensen Index

Sor =
1

S−1

∑N
j=1(sj − 1)

1
S
∑S

i=1 ni
, 0 ≤ Sor ≤ 1

• N the number of selected genes, S the number of seeds, sj the number of seeds
where the gene j is selected and ni the number of selected genes in the seed i

Ù Variation of the composition of genes between seeds
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AIC (Akaike Information Criterion)
• Evaluate the quality of a model

Ù Quality of the adjustement and complexity of the model

• Compute the mean and the standard deviation of the AIC for the 100 seeds

Mean and standard deviation of the number of selected genes
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Studying of stability (Summary)

On the ccRCC dataset
1 Stability of regularization methods in high-dimension?

Ù Poor: Sørensen index ↘ with the dimension
2 Screening methods solve the problem of stability in high-dimension?

Ù Partially true: SIS and ISIS → better results than regularization methods
Ù Sørensen indexes ↗ with the dimension
Ù False for PSIS (similar to regularization methods)

3 Biological knowledge improves the stability?
Ù Unclear: coxCS → worst results

4 And about the quality of the selection?
Ù Good values of AIC for the regularization methods (despite their bad stability)
Ù Values of AIC for SIS and ISIS close to the values of regularization methods
Ù PSIS and coxCS worse → due to the number of parameters?
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Studying of stability (Summary)
On the ccRCC dataset

1 Stability of regularization methods in high-dimension?
Ù Poor: Sørensen index ↘ with the dimension

2 Screening methods solve the problem of stability in high-dimension?
Ù Partially true: SIS and ISIS → better results than regularization methods
Ù Sørensen indexes ↗ with the dimension
Ù False for PSIS (similar to regularization methods)

3 Biological knowledge improves the stability?
Ù Unclear: coxCS → worst results

4 And about the quality of the selection?
Ù Good values of AIC for the regularization methods (despite their bad stability)
Ù Values of AIC for SIS and ISIS close to the values of regularization methods
Ù PSIS and coxCS worse → due to the number of parameters?

Issue: Sørensen index → more stable for the nested selection scenarii
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Discovering new markers for the ccRCC

Potential genes impacting patients’ survival
1 Immune-Checkpoints

• B7-H3 (CD276): good biomarker → to validate biologically
• HLA-G: good biomarker, sharing information with others genes as ILT2

• Alternative to treatments PD1/PDL1 (in case of no response)

2 Differential expressed genes/All genes
Ù Identify of potential genes → to explore more precisely
• CHEK2: known to have an impact in the breast cancer
• CKAP4: implied in the immune system (ccRCC: immunogene cancer)
• CUBN: validated by Gremel et al. (2017)
• FBXL5:

• playing a role in the immune system
• implied in the chronic renal diseases
• linked to 2 immune-checkpoints
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1 Survival analysis

2 Marker detection in oncolgy

3 Neural networks for the survival prediction
Survival prediction in high-dimension
Neural networks for survival prediction
Simulation study
Real datasets

4 Conclusion/Perspectives
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Survival prediction in high-dimension

Objective

• Prediction of survival of patients according to patient features

Survival prediction: CoxL1

1 Applying Lasso method to select variables
2 Coefficients of selected variables are estimated from the Cox partial likelihood
3 Baseline hazard function α0(t) is estimated from the Ramlau-Hansen kernel

estimator

Deep learning more and more popular in the biomedical field

Ù Study of neural networks to predict the survival duration in comparison to
coxL1 (reference model)
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Neural networks in survival analysis

Our objective: Explore the potential of neural networks to predict survival
duration of patients from genomic data

• Approach not recent (Faraggi and Simon (1995)): only considered for small
numbers of input data

• In high-dimension?

2 strategies based on neural networks
1 Based on Cox partial log-likelihood (Faraggi and Simon, 1995)

Ù Study in high-dimension by Ching et al. in 2018 (Cox-nnet)
2 Based on discrete time model (Biganzoli et al., 1998)

Ù Lee et al. (2018); Sautreuil et al. (2019)
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Cox-nnet (Ching et al., 2018)
Neural network based on Cox model

Ù Principle: Output layer is the regression part of the Cox model

exp(βTG(WXi + b))

• Xi is replaced by the output of the hidden layer: G(WXi + b)T

• W is the weight matrix, b is the bias term for each hidden neuron and G is the
activation function

Ù Parameter estimation from the Cox partial log-likelihood:

L(β,W,b) =
n∑

i=1

θi −
n∑

i=1

δi log

∑
l∈Ri

exp (θl)

 ,

• δi : censorship indicator and θi = βTG(WXi + b)
Ù Drawback: Need to estimate α0(t) separately

• α0(t) is estimated from the Ramlau-Hansen kernel estimator and bandwidth selected by
Goldenshluger-Lepski method (Guilloux et al., 2016)
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NNsurv (Sautreuil et al., 2019)
Adaptation of Biganzoli et al. (1998) to the high-dimension (implementation
with Keras library)

• Introducing L time intervals Al =]tl−1, tl] to which belong survival times

Ù Discrete hazard rate function is defined as the survival conditional probability:

hil = P(Ti ∈ Al|Ti > tl−1)
• Introducing the death indicator:

dil =

{
1 if Al contains the interest event for the uncensored individuals
0 otherwise

Ù Parameter estimation from total log-likelihood (used as cross-entropy error function):

L(W) = −
n∑

i=1

li∑
l=1

dil log(ĥil) + (1− dil) log(1− ĥil).

• ĥil = ĥl(Xi,W) with W the weight matrix and bias
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Version 1: NNsurv

X1

X2

X3

Tk

Output

Hidden
Layer

Input
Layer

Output
Layer

Ù Inputs:
• Tk : Mid-point of intervals Al (p variables of each individual duplicated for each time interval)

Ù Configurations:
• Cross-validation procedure to select the hyperparameters
• Number of neurons in the hidden layer: H =

√p
• Batch size, early stopping, optimization methods and dropout
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Version 2: NNsurv deep

X1

X2

X3

Tk

Output

Hidden
Layer

Hidden
Layer

Input
Layer

Output
Layer

Ù Inputs:
• Tk : Mid-point of intervals Al (p variables of each individual duplicated for each time interval)

Ù Configurations:
• Cross-validation procedure to select the hyperparameters
• Number of neurons in the hidden layer: H =

√p
• Batch size, early stopping, optimization methods and dropout
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Version 3: NNsurvK (NNsurv with multivariate outputs)
Ù L outputs (for each time interval) (Liestbl et al., 1994)

P = 4 and L = 5

X1

X2

X3

X4

Output 1

Output 2

Output 3

Output 4

Output 5Ù Introducing a new death indicator (Mani et al., 1999):

d̃il =


0 for 1  ≤ l < li,
1 for li  ≤ l ≤ L and individual i is uncensored,
pl = rl

nl
for li  ≤ l ≤ L and individual i is censored

Ù Fused-lasso regularization: penalize the deviation from proportional hazards

L = −
n∑
i=1

li∑
l=1

d̃il log(ĥil) + (1− d̃il) log(1− ĥil) + α

H∑
h=1

L∑
l=1

(
Whl −Wh(l−1)

)2
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Test cases
Objective

Ù Comparison of five different methods (CoxL1, Cox-nnet, NNsurv, NNsurv
deep, NNsurvK) adapted to high-dimension on:

1 Simulated datasets
2 Real datasets

Metrics
• Concordance index (Ctd) (Antolini et al., 2005): score indicating how well

prediction corresponds to ranks of survival data
• Ctd = 0.5 → random process
Ù The prediction is better when the value of Ctd is closer to 1

• Integrated Brier Score (IBS): score computing the squared error between the
predicted survival probability and the actual survival of patients at each time
point

Ù The prediction is better when the value of IBS is closer to 0
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Simulated datasets
Simulation of survival data from Cox, AFT and AH (R package survMS)
https://gitlab-research.centralesupelec.fr/2017sautreuim/survms

Ù Based on Bender et al. (2005) for the Cox model and extended to two others
survival models (AFT and AH)

• The expression of the survival time is written in a general way :

T =
1

ψ1(X)
H−1

0

(
log(1− U)

ψ2(X)

)
(1)

(ψ1(X), ψ2(X)) =


(1, exp(βTX)) for the Cox model
(exp(βTX), exp(−βTX)) for the AH model
(exp(βTX), 1) for the AFT model

and U ∼ U [0, 1]
Ù ψ(X): interactions and non-linear (perspectives)

PhD defense - M.Sautreuil Contributions to marker detection and survival analysis in oncology 27/37

https://gitlab-research.centralesupelec.fr/2017sautreuim/survms


Introduction Survival analysis Marker detection in oncolgy Neural networks for the survival prediction Conclusion/Perspectives

Simulated datasets
Cox/Weibull model:
Ù Survival time following a Weibull distribution W(α, λ)

T =

(
−

1

λ
log(1 − U) exp(−β

TXi)
) 1

α
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AFT/Log-normal model:
Ù Survival times following a Log-normal distribution LN (α, λ)

T =

(
exp(σΦ−1(U) + µ)

)
exp((1/√p)βTX)
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Simulated datasets
Shifted AFT/Log-normal model:
Ù Survival times following a Log-normal distribution LN (α, λ)

T =

(
exp(σΦ−1(U) + µ)+βT

2 X
)

exp((1/√p)βTX)
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AH/Log-normal model:
Ù Survival times following a Log-normal distribution LN (α, λ)

T =
1

exp(βTXi)
exp

[
σΦ

−1

(
log(1 − U)

exp(−βTXi)

)
+ µ

]
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Summary and conclusion - Simulated datasets
1 Cox/Weibull model

• Methods based on Cox partial log-likelihood: best results
• In high-dimension: best results for neural network based on Cox partial log-likelihood (cox-nnet)

2 AFT/Log-normal model
• Neural networks based on discrete time model: best for n = 1 000
• Cox-nnet: best for n = 200

3 Shifted AFT/Log-normal - AH/Log-normal model
• Best results for neural networks based on discrete time model
• CoxL1 et cox-nnet: good results

n = 200 n = 1000

methods
p 10 100 1000 10 100 1000

Reference (C⋆
td) 0.8468 0.8589 0.8459 0.8468 0.8589 0.8459

NNsurv 0.8080 0.7764 0.5607 0.8404 0.8391 0.7098
NNsurv deep 0.8385 0.7746 0.6028 0.8463 0.8361 0.7021
NNsurvK 0.8197 0.5870 0.5610 0.8404 0.7990 0.6154
Cox-nnet 0.8448 0.7747 0.5916 0.8441 0.8410 0.6678
CoxL1 0.8449 0.5893 0.5168 0.8457 0.8381 0.5456

Conclusion
• In most situations: Cox-nnet• Complex data: Deep version of neural network based on discrete time model
Ù Neural networks: good performance for a cohort of a thousand patients with one hundred covariates
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Results - Real dataset

• ccRCC: clear cell Renal carcinoma cancer (TCGA database)

Ù 17 789 covariates (genomic) for 533 individuals and 67.8% censored individuals

CoxL1 Cox-nnet NNsurv Deep NNsurv
KIRC Ctd 0.5115 0.5277 0.5741 0.5741

IBS 0.2069 0.2076 0.2869 0.2491

Summary
• coxL1: best value of IBS

• Only pertinent covariates (Lasso) → best prediction

• Low performance: Many covariates and high censorship rate
Ù Perspective: preliminary variable selection
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Results - Real dataset

• Metabric: breast cancer (from UK and Canada project)

Ù 800 covariates (RNA-seq and clinical) for 1981 individuals and 55% censored
individuals

CoxL1 Cox-nnet NNsurv Deep NNsurv
Metabric Ctd 0.6757 0.6676 0.6853 0.6728

IBS 0.1937 0.1965 0.1972 0.2038

Summary
Ù Good performance of Neural networks: but marginaly higher than coxL1
Ù Confirm good performance of Neural networks for a cohort of a thousand patients with a

hundred covariates
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1 Survival analysis

2 Marker detection in oncolgy

3 Neural networks for the survival prediction

4 Conclusion/Perspectives
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Marker detection for the ccRCC
Conclusion

• Identification of the genes implied in the ccRCC
Ù Target HLA-G/ILT potential strategy in the case of no response to

anti-PD1/PDL-1
• Identification of the genes impacting the survival duration

1 Discovery of new markers
• B7H3, CHEK2, CKAP4, CUBN, FBXL5
Ù To validate biologically

2 Stability study of regularization and screening methods
• Screening methods: more stable
• Regularization and screening methods: same quality of adjustement
Ù Quantifying on only one real dataset
Ù Sørensen index: ill-adapted

Perspective

Ù Extend the stability study to simulated datasets with other indexes
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Marker detection for the ccRCC
Perspectives

1 Proposing a new index: Approximated Fscore based on the number of hypothetical true
covariates

Ù Precision and Recall:
Precision(n∗) =

n∗ −
∑n∗

i=1(1− si)∑N
i=1 si

=

∑n∗

i=1 si∑N
i=1 si

Recall(n∗) =
n∗ −

∑
1≤i≤n∗ (1− si)
n∗

=

∑n∗

i=1 si
n∗

Ù Fscore(n∗) = 2 Precision(n∗)Recall(n∗)
Precision(n∗)+Recall(n∗)

2 Generating simulated datasets from Cox model
• Use of R package survMS

3 Compute Fscore to validate the selection (pertinent covariates are known)

 Mathilde Sautreuil, Sarah Lemler, Paul-Henry Cournède, Benchmarking the Stability of
Variable Selection Methods in the Cox Model, in process
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Survival prediction

Conclusion
• In most situations:

• Best neural network: Cox-nnet
Ù Based on the Cox framework
Ù Neural network enables to handle nonlinear effects and interactions

• In the most complex situations:
• Best neural network: NNsurv deep (with several hidden layers)
Ù Neural network enables to estimate directly the hazard risk
Ù Handles better non-proportional risks and crossing survival curves

Ù NN: good performance for a cohort of a thousand patients with one hundred
covariates
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Survival prediction

Perspectives

• Publish the R survMS (survival Models Simulation) package on CRAN
• Study neural networks recently developed

• Based on Cox model with time as covariate (Kvamme and Borgan, 2019)
• Based on pseudo-observations (Zhao and Feng, 2020; Roblin et al., 2020)
• Multi-task neural networks (Goncalves et al., 2020)

• Other models (e.g. mixture models (Bussy et al., 2019), random survival forest
(Ishwaran et al., 2008))

• Variable selection before neural network
• Interpretability of neural networks
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Thanks for your attention
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Immune-checkpoints
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Metrics
Concordance Index

• Concordance index (Ctd): score indicating how well prediction corresponds to
ranks of survival data

Ĉtd =

∑n
i=1

∑
j̸=i conctdij∑n

i=1

∑
j̸=i compij

(2)

compij = 1{(ti<tj;δi=1)∪(ti=tj;δi=1,δj=0)} et
conctdij = 1{S(ti|Xi)<S(tj|Xj)}compij.

• {(ti, δi, S(t(k),Xi); k = 1, . . . ,K)}, avec :
• ti : observed time of individual i
• δi : censorship indicator
• S(t(k),Xi) : predicted survival function
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Metrics

Integrated Brier Score

• Integrated Brier Score (IBS): score computing the squared error between the
predicted survival probability and the actual survival of patients at each time
point IBS =

1

τ

∫ τ

0
B̂S(t, Ŝ)dt,

• B̂S(t, Ŝ) is the expected Brier score

• To estimate the Brier Score from right-censored data:
B̂S(t, Ŝ) = 1

N
∑
i∈D̃N

Ŵi(t)(Ỹi(t)− Ŝ(t|Xi))
2

• Ỹi = 1{Yi>t} the observed status and N the number of samples in D̃N (test)
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Brier Score

Estimation from right-censored data

• Squared residuals are weighted using Inverse Probability of Censoring Weights
(IPCW) (Gerds and Schumacher, 2006) given by:

Ŵi(t) =
(1− Ỹi(t))∆i

Ĝ(T̃i−|Xi)
+

Ỹi(t)
Ĝ(t|Xi)

, (3)

• Ĝ(t|x) ≈ P(Ci > t|Xi = x) estimate of the conditional survival function of the
censoring times (e.g.: Kaplan-Meier estimate).
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Studying of stability (Regularization methods)
Lasso Ridge Adaptive Elastic

Lasso Net
Immune-Checkpoints Sørensen index 0.9960 0.9975 0.9933 0.9940

Jaccard index 0.73 0.80 0.60 0.62
Fscore(n*) (n*=20) 0.8682 0.9525 0.703 0.898
Number of selected 15.36 20 10.84 20
genes (2.83) (fixed) (3.53) (fixed)
AIC 1915.50 1919.42 1917.71 1932.69

(4.33) (2.01) (11.06) (3.34)
Differential Sørensen index 0.9946 0.9500 0.9436 0.9501
expressed Jaccard index 0.65 0.58 0.14 0.64
genes Fscore(n*) (n*=20) 0.739 0.8635 0.523 0.872

Number of selected 11.72 20 7.84 20
genes (2.34) (fixed) (3.01) (fixed)
AIC 1867.35 1869.61 1862.47 1878.10

(1.95) (2.91) (23.04) (4.45)
All genes Sørensen index 0.9332 0.9940 0.8284 0.9755

Jaccard index 0.12 0.62 0.05 0.28
Fscore(n*) (n*=20) 0.7225 0.8605 0.4754 0.672
Number of selected 17.70 20 8.65 20
genes (3.57) (fixed) (3.64) (fixed)
AIC 1873.43 1870.44 1870.42 1874.36

(24.95) (8.33) (40.97) (5.60)
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Studying of stability (Screening methods)
SIS ISIS PSIS coxCS

Immune-Checkpoints Sørensen index 0.9708 0.6089 0.9983 0.9974
Jaccard index 0.2495 0.798 0.8566 0.796
Fscore(n*) (n*=20) 0.2277 0.3532 0.6004 0.5704
Number of selected 2.57 4.29 8.58 7.98
genes (2.23) (0.69) (0.57) (2.01)
AIC 1953.37 1935.35 1961.22 1946.50

(21.36) (3.66) (4.33) (9.92)
Differential Sørensen index 0.9905 0.382 0.9662 0.8885
expressed Jaccard index 0.5101 0.5841 0.2207 0.8127

Fscore(n*) (n*=20) 0.3416 0.3519 0.8824 0.6188
genes Number of selected 4.12 4.27 18.51 8.96

genes (1.57) (1.02) (5.11) (1.47)
AIC 1903.63 1895.25 1944.20 1960.39

(7.78) (5.92) (5.27) (3.50)
All genes Sørensen index 0.9962 0.8956 0.9610 0.9341

Jaccard index 0.7222 0.6212 0.2492 0.1231
Fscore(n*) (n*=20) 0.4496 0.424 0.7494 0.7814
Number of selected 5.80 5.39 27.21 25.85
genes (1.04) (1.50) (9.18) (14.44)
AIC 1873.80 1880.01 1931.38 1937.71

(0.71) (24.69) (12.55) (13.69)
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Studying of stability (Simulated Datasets)
Methods #Covariates Sorensen Jaccard #Genes selected Fscore(n*)

(n*=20) Fscore AIC

Adaptive-Lasso 1000 0.9937 0.6122 25.26
(7.0534) 0.8506 0.384 5063.25

(30.4043)
25000 0.9892 0.4788 4.84

(2.2862) 0.3897 0 5153.96
(27.0826)

coxCS1 1000 0.9989 0.9 27.03
(1.5005) 0.8505 0.7974 5154.83

(0)
25000 0.9992 0.9251 26.85

(1.1135) 0.8538 0.8021 5180.22
(0)

coxCS2 1000 0.9997 0.9697 23.28
(0.8885) 0.9242 0.7985 5153.42

(0)
25000 0.9997 0.9662 25.13

(0.6913) 0.8863 0.8482 5196.65
(0)

Elastic-Net 1000 0.9784 0.3115 21.97
(11.388) 0.823 0.3826 5038.4054

(510.0245)
25000 0.9748 0.2788 1.43

(0.9348) 0.1335 0 5197.3719
(12.4215)

ISIS 1000 0.9995 0.9519 20
(0) 0.999 0.35 5071.75

(1.0458)
25000 1 1 20

(0) 1 0.05 5003.24
(0)

lasso 1000 0.9939 0.6184 28
(6.9515) 0.8304 0.38 5058.89

(28.5348)
25000 0.9869 0.4298 4.79

(2.5556) 0.3864 0 5156.06
(27.1983)

PSIS 1000 1 1 6
(0) 0.4615 0.4615 5151.49

(0)
25000 1 1 4

(0) 0.3333 0.3333 5164.32
(0)

SIS 1000 1 1 20
(0) 1 0.35 5097.24

(0)
25000 1 1 20

(0) 1 0.05 5034.58
(0)
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Studying of stability (Simulated Datasets)

Methods #Covariates #Genes selected Fscore(n*)
(n*=20) Fscore

coxCS2 1000 23.28
(0.8885) 0.9242 0.7985

25000 25.13
(0.6913) 0.8863 0.8482

lasso 1000 28
(6.9515) 0.8304 0.38

25000 4.79
(2.5556) 0.3864 0

SIS 1000 20
(0) 1 0.35

25000 20
(0) 1 0.05
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Neural networks
Multi-Layer Perceptron:

Input #1

Input #2

Input #3

Input #4

Output

Hidden
Layer

Input
Layer

Output
Layer

• Constituting by one input layer, at least one hidden layer, and one output
layer

• Each neuron of layers plays the role of a non-linear regression between its
inputs and output variables

• Coefficients of its regression are called weights and non-linear transformation
of its combinaison is called activation function
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Neural network based on discrete time model (Biganzoli et al., 1998)
Structure of neural network

• I have coded the neural network of Biganzoli et al. to adapt it to
high-dimension

• I have coded the 2nd approach of neural network
Ù Use of keras library

• Due to large numbers of variables Ù Overfitting
• Biganzoli et al. had already proposed a regularization term: ridge
Ù I implemented a cross-validation procedure to choose the regularization

parameter λ

• Many configurations were tested:
• Number of nodes in hidden layer Ù

√p
• With or without dropout Ù without
• Optimization methods (adam, sgd) Ù adam
• Early stopping Ù with n = 200, without n = 1000
• Batch size Ù chosen by cross-validation
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Datasets

Simulated datasets from Cox model
• Considering the survival times distributed following Weibull distribution

W(α, λ), with:
• Baseline function of the form α0(t) = αλtα−1

• Inverse cumulative hazard function H−1
0 (t) =

( t
λ

)1/α
• Survival time T of the Cox model:

T =

(
− 1

λ
log(1− U) exp(−βTXi)

) 1
α

(4)

• Setting α = 2.67 and λ = 7.5e−10 to have mean and variance close to real
datasets

• Design matrix X simulated from an uniform distribution on [−1, 1].
• Number of samples: 200 and 1000
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Datasets

Simulated datasets from AFT model
• Considering the survival times distributed following Log-normal distribution

LN (α, λ), with:
• Baseline function of the form h0(t) =

1
a
√

2πt exp
[
− (log t−λ)2

2a2

]
1−Φ[ log t−λ

a ]
• Inverse cumulative hazard function H−1

0 (t) = exp
(
αΦ−1(1− exp(−t)) + λ

)
• Survival time T of AFT model:

T =
1

exp((1/√p)βTX)

(
exp(σΦ−1(U) + µ)

)
. (5)

• Φ(t) : cumulative distribution function of normal distribution (N (0, 1))
• (1/

√p) : normalization term

• Setting α = 0.7 and λ = 7.71 to have mean and variance close to real datasets
• Design matrix X simulated from an uniform distribution on [0, 1].
• Number of samples: 200 and 1000
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Datasets
Simulated datasets from modified AFT model

• Considering the survival times distributed following Log-normal distribution
LN (α, λ), with:
• Baseline function of the form h0(t) =

1
a
√

2πt exp
[
− (log t−λ)2

2a2

]
1−Φ[ log t−λ

a ]
• Inverse cumulative hazard function H−1

0 (t) = exp
(
αΦ−1(1− exp(−t)) + λ

)
• Survival time T of AFT model:

T =
1

exp((1/√p)βTX)

(
exp(σΦ−1(U) + µ) + βT

2 X
)
. (6)

• β2 ∼ U [−1.5, 1.5]
• Φ(t) : cumulative distribution function of normal distribution (N (0, 1))
• (1/

√p) : normalization term

• Setting α = 0.7 and λ = 7.71 to have mean and variance close to real datasets
• Design matrix X simulated from an uniform distribution on [0, 1].
• Number of samples: 200 and 1000
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Results - Cox/Weibull datasets

n 200 1000
Méthode p 10 100 1000 10 100 1000
Référence C⋆

td 0.7442 0.7428 0.7309 0.7442 0.7428 0.7309
IBS⋆ 0.0471 0.0549 0.0582 0.0471 0.0549 0.0582

NNsurv Ctd 0.7137 0.6224 0.5036 0.7398 0.7282 0.5700
IBS 0.0980 0.0646 0.1359 0.0759 0.0537 0.1007

NNsurvK Ctd 0.6261 0.5135 0.5173 0.7312 0.6504 0.5699
IBS 0.1310 0.1121 0.1137 0.1178 0.1011 0.1130

NNsurv Ctd 0.7225 0.5982 0.5054 0.7424 0.7236 0.5741
deep IBS 0.0878 0.0689 0.1080 0.0591 0.0555 0.1185
NNsurvK Ctd 0.6178 0.4784 0.4112 0.7112 0.5772 0.4748
deep IBS 0.1324 0.1122 0.1561 0.1179 0.1023 0.1260
Cox Ctd 0.7313 0.6481 0.5351 0.7427 0.7309 0.6110
-nnet IBS 0.0688 0.0622 0.1402 0.0640 0.0498 0.0710
CoxL1 Ctd 0.7292 0.5330 0.5011 0.7419 0.7243 0.5

IBS 0.0715 0.0672 0.1175 0.0541 0.0509 0.0770
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Results - AFT/Log-normale datasets

n 200 1000
Méthode p 10 100 1000 10 100 1000
Référence C⋆

td 0.9203 0.9136 0.9037 0.9203 0.9136 0.9037
IBS⋆ 0.0504 0.0604 0.0417 0.0504 0.0604 0.0417

NNsurv Ctd 0.9832 0.8349 0.5425 0.9851 0.9038 0.7426
IBS 0.0265 0.0560 0.2577 0.0247 0.0188 0.0642

NNsurvK Ctd 0.9802 0.7118 0.5575 0.9856 0.8707 0.6049
IBS 0.1425 0.1043 0.1468 0.1319 0.0820 0.0979

NNsurv Ctd 0.9786 0.8275 0.5576 0.9857 0.9060 0.7500
deep IBS 0.0295 0.0561 0.1886 0.0261 0.0207 0.0631
NNsurvK Ctd 0.9791 0.6976 0.5694 0.9861 0.8716 0.6090
deep IBS 0.1079 0.1049 0.1905 0.0984 0.0657 0.1334
Cox Ctd 0.9825 0.8558 0.5979 0.9844 0.9060 0.7085
-nnet IBS 0.0122 0.0906 0.0959 0.0126 0.0374 0.0808
CoxL1 Ctd 0.9867 0.7827 0.5091 0.9856 0.9028 0.5349

IBS 0.0146 0.0965 0.0960 0.0077 0.0182 0.0827
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Results - AH/Log-normale datasets

n 200 1000
Méthode p 10 100 1000 10 100 1000
Référence C⋆

td 0.7225 0.6857 0.7070 0.7225 0.6867 0.7070
IBS⋆ 0.0755 0.0316 0.0651 0.0755 0.0316 0.0651

NNsurv Ctd 0.6863 0.5971 0.5358 0.7084 0.6088 0.5654
IBS 0.1247 0.0780 0.0859 0.0699 0.0347 0.0533

NNsurvK Ctd 0.6151 0.5258 0.5025 0.7107 0.6214 0.5159
IBS 0.1267 0.1087 0.1396 0.1020 0.0459 0.0790

NNsurv Ctd 0.7042 0.5793 0.5325 0.7155 0.6450 0.5702
deep IBS 0.1789 0.2529 0.1554 0.0602 0.0303 0.0484
NNsurvK Ctd 0.6067 0.4847 0.5025 0.7138 0.5570 0.5199
deep IBS 0.1234 0.1058 0.1328 0.1048 0.0451 0.0558
Cox Ctd 0.7128 0.5812 0.5356 0.7097 0.6047 0.5720
-nnet IBS 0.1342 0.2243 0.1609 0.0843 0.0875 0.0553
CoxL1 Ctd 0.7042 0.5219 0.5112 0.7088 0.5597 0.5

IBS 0.1350 0.2278 0.1614 0.0608 0.0408 0.0553
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Results - shifted AFT/Log-normale datasets

n 200 1000
Méthode p 10 100 1000 10 100 1000
Référence C⋆

td 0.8468 0.8589 0.8459 0.8468 0.8589 0.8459
IBS⋆ 0.0294 0.0199 0.0305 0.0294 0.0199 0.0305

NNsurv Ctd 0.8080 0.7764 0.5607 0.8404 0.8391 0.7098
IBS 0.0624 0.0775 0.0669 0.0532 0.0564 0.0651

NNsurvK Ctd 0.8197 0.5870 0.5610 0.8404 0.7990 0.6154
IBS 0.0859 0.1003 0.1235 0.0771 0.0759 0.0856

NNsurv Ctd 0.8385 0.7746 0.6028 0.8463 0.8361 0.7021
deep IBS 0.0487 0.0897 0.0759 0.0363 0.0312 0.0510
NNsurvK Ctd 0.7941 0.4673 0.5559 0.8394 0.7716 0.6011
deep IBS 0.0838 0.0942 0.1237 0.0735 0.0744 0.0843
Cox Ctd 0.8448 0.7747 0.5916 0.8441 0.8410 0.6678
-nnet IBS 0.0347 0.0717 0.0819 0.0323 0.0680 0.0622
CoxL1 Ctd 0.8449 0.5893 0.5168 0.8457 0.8381 0.5456

IBS 0.0354 0.0933 0.0818 0.0267 0.0429 0.0628
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Results - Censored shifted AFT/Log-normale datasets

n 200 1000
Méthode p 10 100 1000 10 100 1000
Référence C⋆

td 0.8718 0.8917 0.8765 0.8718 0.8917 0.8765
IBS⋆ 0.0473 0.0569 0.0482 0.0473 0.0569 0.0482

NNsurv Ctd 0.8600 0.8086 0.5175 0.8697 0.8706 0.6990
IBS 0.1064 0.1009 0.2866 0.1335 0.0673 0.1952

NNsurvK Ctd 0.8063 0.6810 0.5422 0.8591 0.7866 0.6063
IBS 0.1704 0.1946 0.2856 0.1961 0.1550 0.1523

NNsurv Ctd 0.8431 0.7168 0.5463 0.8710 0.8739 0.7155
deep IBS 0.1212 0.1268 0.1142 0.0869 0.0587 0.1013
NNsurvK Ctd 0.8193 0.5633 0.5217 0.8435 0.7466 0.5921
deep IBS 0.1925 0.2038 0.2883 0.2018 0.1593 0.1520
Cox Ctd 0.8643 0.8038 0.5 0.8697 0.8730 0.7145
-nnet IBS 0.0613 0.1233 0.1192 0.0529 0.0844 0.0961
CoxL1 Ctd 0.8623 0.6107 0.5309 0.8694 0.8659 0.5160

IBS 0.0602 0.1340 0.1394 0.0667 0.0799 0.1142
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Results - Sparse shifted AFT/Log-normale datasets

n 200 1000
Méthode p 10 100 1000 10 100 1000
Référence C⋆

td 0.8673 0.8673 0.8673 0.8673 0.8673 0.8673
IBS⋆ 0.0284 0.0284 0.0284 0.0284 0.0284 0.0284

NNsurv Ctd 0.8684 0.8012 0.5902 0.8766 0.8646 0.7436
IBS 0.1254 0.1129 0.0738 0.0621 0.1566 0.0622

NNsurvK Ctd 0.8648 0.5215 0.5581 0.8770 0.8511 0.6566
IBS 0.1094 0.0987 0.0995 0.0899 0.0872 0.0835

NNsurv Ctd 0.8744 0.8062 0.5938 0.8761 0.8664 0.7284
deep IBS 0.0474 0.0488 0.0739 0.0378 0.0304 0.0487
NNsurvK Ctd 0.8610 0.5100 0.5263 0.8746 0.8227 0.5835
deep IBS 0.1099 0.0992 0.1091 0.0913 0.0848 0.0869
Cox Ctd 0.8742 0.7922 0.5832 0.8757 0.8683 0.6952
-nnet IBS 0.0885 0.0773 0.1015 0.0532 0.0519 0.0699
CoxL1 Ctd 0.8759 0.8686 0.8733 0.8739 0.8743 0.8726

IBS 0.0904 0.0805 0.0754 0.0300 0.0291 0.0290
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Results - Real datasets
• KIRC: Clear cell renal cell carcinoma (from TCGA database)

Ù 17781 covariates (genomic) for 533 indivduals and 67% censored individuals
• Metabric: breast cancer (from UK and Canada project)

Ù 800 covariates (genomic and clinical) for 1981 indivduals and 55% censored
individuals

Cox Cox-nnet NNsurv Deep NNsurv NNsurvK
KIRC Ctd 0.5115 0.5277 0.5741 0.5888 0.6076

IBS 0.2069 0.2075 0.2869 0.? 0.4928
Metabric Ctd 0.6757 0.6676 0.6853 0.6728 0.6015

IBS 0.1937 0.1965 0.1972 0.2038 0.43698

• NNsurv: Neural network based on discrete time model adapted to the high-dimension
• NNsurv deep: NNsurv with several hidden layers
• NNsurvK: Neural network based on discrete time model with modifications
• Cox-nnet: Neural network based on Cox partial log-likelihood adapted by Ching et al. to the

high-dimension Ù Estimation of α0(t) to get the estimated survival duration
• CoxL1: Cox partial log-likelihood with Lasso procedure
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Counting processes in the specific case of right censoring
Counting processes [Aalen, 1980] :

• Ni(t) = 1{Xi≤t, δi=1} counting process
• Yi(t) = 1{Xi≥t} at-risk process
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